MLS-C00 AWS Certified Machine Learning Specialty - Pearson - TorrentBank

File Name:MLS-C00 AWS Certified Machine Learning Specialty - Pearson

Create Tool:

Create Time:1970-01-01 08:00:00

File Size:9.70 GB

File Count:53

File Hash:a112f57128a8a94aeed1bb5e7d7849d3067e6130

Magnet Link:

Magnet Link:

Torrent File:

01 - AWS Certified Machine Learning-Specialty (ML-S) - Introduction.mp4 64.76 MB
02 - Learning objectives.mp4 38.07 MB
03 - 1.1 Get an overview of the certification.mp4 181.26 MB
04 - 1.2 Use exam study resources.mp4 90.59 MB
05 - 1.3 Review the exam guide.mp4 331.57 MB
06 - 1.4 Learn the exam strategy.mp4 87.00 MB
07 - 1.5 Learn the best practices of ML on AWS.mp4 108.77 MB
08 - 1.6 Learn the techniques to accelerate hands-on practice.mp4 90.06 MB
09 - 1.7 Understand important ML related services.mp4 699.75 MB
10 - Learning objectives.mp4 36.07 MB
11 - 2.1 Learn data ingestion concepts.mp4 640.68 MB
12 - 2.2 Using data cleaning and preparation.mp4 143.95 MB
13 - 2.3 Learn data storage concepts.mp4 227.46 MB
14 - 2.4 Learn ETL solutions (Extract-Transform-Load).mp4 362.27 MB
15 - 2.5 Understand data batch vs data streaming.mp4 110.68 MB
16 - 2.6 Understand data security.mp4 162.01 MB
17 - 2.7 Learn data backup and recovery concepts.mp4 210.18 MB
18 - Learning objectives.mp4 29.58 MB
19 - 3.1 Understand data visualization - Overview.mp4 217.14 MB
20 - 3.2 Learn Clustering.mp4 159.48 MB
21 - 3.3 Use Summary Statistics.mp4 79.59 MB
22 - 3.4 Implement Heatmap.mp4 53.80 MB
23 - 3.5 Understand Principal Component Analysis (PCA).mp4 91.79 MB
24 - 3.6 Understand data distributions.mp4 91.86 MB
25 - 3.7 Use data normalization techniques.mp4 112.18 MB
26 - Learning objectives.mp4 25.55 MB
27 - 4.1 Understand AWS ML Systems - Overview (Sagemaker, AWS ML, EMR, MXNet).mp4 430.45 MB
28 - 4.2 Use Feature Engineering.mp4 271.25 MB
29 - 4.3 Train a Model.mp4 115.57 MB
30 - 4.4 Evaluate a Model.mp4 145.17 MB
31 - 4.5 Tune a Model.mp4 84.48 MB
32 - 4.6 Understand ML Inference.mp4 153.58 MB
33 - 4.7 Understand Deep Learning on AWS.mp4 292.69 MB
34 - Learning objectives.mp4 34.14 MB
35 - 5.1 Understand ML operations - Overview.mp4 189.53 MB
36 - 5.2 Use Containerization with Machine Learning and Deep Learning.mp4 233.40 MB
37 - 5.3 Implement continuous deployment and delivery for Machine Learning.mp4 176.40 MB
38 - 5.4 Understand A_B Testing production deployment.mp4 68.63 MB
39 - 5.5 Troubleshoot production deployment.mp4 165.17 MB
40 - 5.6 Understand production security.mp4 208.18 MB
41 - 5.7 Understand cost and efficiency of ML systems.mp4 229.19 MB
42 - Learning objectives.mp4 25.93 MB
43 - 6.1 Create Machine Learning Data Pipeline.mp4 281.18 MB
44 - 6.2 Perform Exploratory Data Analysis using AWS Sagemaker.mp4 200.25 MB
45 - 6.3 Create Machine Learning Model using AWS Sagemaker.mp4 226.35 MB
46 - 6.4 Deploy Machine Learning Model using AWS Sagemaker.mp4 284.22 MB
47 - Learning objectives.mp4 28.57 MB
48 - 7.1 Sagemaker Features.mp4 681.50 MB
49 - 7.2 DeepLense Features.mp4 331.77 MB
50 - 7.3 Kinesis Features.mp4 182.80 MB
51 - 7.4 AWS Flavored Python.mp4 160.63 MB
52 - 7.5 Cloud9.mp4 266.49 MB
53 - AWS Certified Machine Learning-Specialty (ML-S) - Summary.mp4 20.80 MB
No trackers found

TorrentBank
Copyright © 2024