[DesireCourse.Net] Udemy - The Complete Machine Learning Course with Python - TorrentBank

File Name:[DesireCourse.Net] Udemy - The Complete Machine Learning Course with Python

Create Tool:

Create Time:1970-01-01 08:00:00

File Size:6.79 GB

File Count:227

File Hash:b214ca1c763b2d13b1007e4c93226f42dc0b69b2

Magnet Link:

Magnet Link:

Torrent File:

0. Websites you may like/[CourseClub.Me].url 48 B
0. Websites you may like/[DesireCourse.Net].url 51 B
0. Websites you may like/[FreeCourseWorld.Com].url 54 B
1. Introduction/1. What Does the Course Cover.mp4 54.40 MB
1. Introduction/1. What Does the Course Cover.srt 3.16 KB
1. Introduction/2. How to Succeed in This Course.html 2.22 KB
1. Introduction/3. Project Files and Resources.html 2.06 KB
10. Unsupervised Learning Clustering/1. Clustering.mp4 125.68 MB
10. Unsupervised Learning Clustering/1. Clustering.srt 20.68 KB
10. Unsupervised Learning Clustering/2. k_Means Clustering.mp4 57.71 MB
10. Unsupervised Learning Clustering/2. k_Means Clustering.srt 10.81 KB
11. Deep Learning/1. Estimating Simple Function with Neural Networks.mp4 143.85 MB
11. Deep Learning/1. Estimating Simple Function with Neural Networks.srt 26.40 KB
11. Deep Learning/2. Neural Network Architecture.mp4 22.37 MB
11. Deep Learning/2. Neural Network Architecture.srt 7.93 KB
11. Deep Learning/3. Motivational Example - Project MNIST.mp4 144.96 MB
11. Deep Learning/3. Motivational Example - Project MNIST.srt 25.83 KB
11. Deep Learning/4. Binary Classification Problem.mp4 72.11 MB
11. Deep Learning/4. Binary Classification Problem.srt 12.20 KB
11. Deep Learning/5. Natural Language Processing - Binary Classification.mp4 76.05 MB
11. Deep Learning/5. Natural Language Processing - Binary Classification.srt 12.78 KB
12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.mp4 13.74 MB
12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.srt 2.72 KB
12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.mp4 54.96 MB
12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.srt 13.76 KB
12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.mp4 18.67 MB
12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.srt 5.76 KB
12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.mp4 37.47 MB
12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.srt 12.11 KB
12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.mp4 70.06 MB
12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.srt 18.20 KB
12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.mp4 27.44 MB
12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.srt 5.70 KB
12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.mp4 20.85 MB
12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.srt 5.05 KB
12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.mp4 77.24 MB
12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.srt 12.58 KB
12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.mp4 155.61 MB
12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.srt 26.23 KB
12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.mp4 40.61 MB
12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.srt 12.70 KB
12. Appendix A1 Foundations of Deep Learning/6. Why Now.mp4 9.06 MB
12. Appendix A1 Foundations of Deep Learning/6. Why Now.srt 3.37 KB
12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.mp4 14.16 MB
12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.srt 5.63 KB
12. Appendix A1 Foundations of Deep Learning/8. Tensors.mp4 16.88 MB
12. Appendix A1 Foundations of Deep Learning/8. Tensors.srt 4.68 KB
12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.mp4 88.79 MB
12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.srt 21.00 KB
13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.mp4 63.65 MB
13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.srt 4.59 KB
13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.mp4 124.88 MB
13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.srt 16.70 KB
13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.mp4 128.54 MB
13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.srt 23.82 KB
13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.mp4 11.20 MB
13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.srt 1.86 KB
13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.mp4 79.75 MB
13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.srt 11.57 KB
13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.mp4 28.48 MB
13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.srt 3.62 KB
13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.mp4 97.00 MB
13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.srt 12.98 KB
13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.mp4 111.14 MB
13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.srt 13.78 KB
13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.mp4 35.41 MB
13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.srt 6.72 KB
13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.mp4 43.81 MB
13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.srt 10.00 KB
13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.mp4 66.21 MB
13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.srt 9.45 KB
13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.mp4 141.94 MB
13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.srt 17.43 KB
13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.mp4 30.03 MB
13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.srt 7.36 KB
13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.mp4 29.13 MB
13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.srt 6.86 KB
13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.mp4 84.39 MB
13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.srt 20.85 KB
13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.mp4 32.32 MB
13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.srt 7.84 KB
13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.mp4 88.13 MB
13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.srt 13.90 KB
2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.mp4 38.42 MB
2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.srt 6.69 KB
2. Getting Started with Anaconda/2. Hello World.mp4 51.22 MB
2. Getting Started with Anaconda/2. Hello World.srt 14.00 KB
2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.mp4 89.84 MB
2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.srt 16.05 KB
2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.mp4 64.56 MB
2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.srt 10.79 KB
2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.mp4 55.87 MB
2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.srt 10.76 KB
2. Getting Started with Anaconda/6. Iris Project 4 Visualization.mp4 93.49 MB
2. Getting Started with Anaconda/6. Iris Project 4 Visualization.srt 12.38 KB
3. Regression/1. Scikit-Learn.mp4 48.45 MB
3. Regression/1. Scikit-Learn.srt 10.98 KB
3. Regression/10. Multiple Regression 2.mp4 91.15 MB
3. Regression/10. Multiple Regression 2.srt 15.38 KB
3. Regression/11. Regularized Regression.mp4 44.35 MB
3. Regression/11. Regularized Regression.srt 8.45 KB
3. Regression/12. Polynomial Regression.mp4 110.78 MB
3. Regression/12. Polynomial Regression.srt 22.08 KB
3. Regression/13. Dealing with Non-linear Relationships.mp4 62.69 MB
3. Regression/13. Dealing with Non-linear Relationships.srt 11.03 KB
3. Regression/14. Feature Importance.mp4 36.25 MB
3. Regression/14. Feature Importance.srt 5.67 KB
3. Regression/15. Data Preprocessing.mp4 135.55 MB
3. Regression/15. Data Preprocessing.srt 28.16 KB
3. Regression/16. Variance-Bias Trade Off.mp4 68.70 MB
3. Regression/16. Variance-Bias Trade Off.srt 14.55 KB
3. Regression/17. Learning Curve.mp4 56.37 MB
3. Regression/17. Learning Curve.srt 10.83 KB
3. Regression/18. Cross Validation.mp4 48.04 MB
3. Regression/18. Cross Validation.srt 10.22 KB
3. Regression/19. CV Illustration.mp4 127.23 MB
3. Regression/19. CV Illustration.srt 21.27 KB
3. Regression/2. EDA.mp4 151.67 MB
3. Regression/2. EDA.srt 24.41 KB
3. Regression/3. Correlation Analysis and Feature Selection.mp4 22.58 MB
3. Regression/3. Correlation Analysis and Feature Selection.srt 10.67 KB
3. Regression/3.1 0305.zip 2.13 MB
3. Regression/4. Correlation Analysis and Feature Selection.mp4 105.19 MB
3. Regression/4. Correlation Analysis and Feature Selection.srt 15.22 KB
3. Regression/5. Linear Regression with Scikit-Learn.mp4 76.98 MB
3. Regression/5. Linear Regression with Scikit-Learn.srt 16.04 KB
3. Regression/6. Five Steps Machine Learning Process.mp4 77.27 MB
3. Regression/6. Five Steps Machine Learning Process.srt 10.01 KB
3. Regression/7. Robust Regression.mp4 119.06 MB
3. Regression/7. Robust Regression.srt 21.80 KB
3. Regression/8. Evaluate Regression Model Performance.mp4 99.66 MB
3. Regression/8. Evaluate Regression Model Performance.srt 19.18 KB
3. Regression/9. Multiple Regression 1.mp4 125.51 MB
3. Regression/9. Multiple Regression 1.srt 24.28 KB
4. Classification/1. Logistic Regression.mp4 119.59 MB
4. Classification/1. Logistic Regression.srt 25.37 KB
4. Classification/10. Precision Recall Tradeoff.mp4 102.01 MB
4. Classification/10. Precision Recall Tradeoff.srt 22.26 KB
4. Classification/11. Altering the Precision Recall Tradeoff.mp4 20.93 MB
4. Classification/11. Altering the Precision Recall Tradeoff.srt 3.69 KB
4. Classification/12. ROC.mp4 52.22 MB
4. Classification/12. ROC.srt 8.24 KB
4. Classification/2. Introduction to Classification.mp4 42.12 MB
4. Classification/2. Introduction to Classification.srt 6.02 KB
4. Classification/3. Understanding MNIST.mp4 108.98 MB
4. Classification/3. Understanding MNIST.srt 18.30 KB
4. Classification/4. SGD.mp4 57.30 MB
4. Classification/4. SGD.srt 11.50 KB
4. Classification/5. Performance Measure and Stratified k-Fold.mp4 51.54 MB
4. Classification/5. Performance Measure and Stratified k-Fold.srt 8.69 KB
4. Classification/6. Confusion Matrix.mp4 54.71 MB
4. Classification/6. Confusion Matrix.srt 11.70 KB
4. Classification/7. Precision.mp4 23.58 MB
4. Classification/7. Precision.srt 4.35 KB
4. Classification/8. Recall.mp4 19.64 MB
4. Classification/8. Recall.srt 3.93 KB
4. Classification/9. f1.mp4 12.11 MB
4. Classification/9. f1.srt 2.37 KB
5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.mp4 37.87 MB
5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.srt 8.63 KB
5. Support Vector Machine (SVM)/2. Linear SVM Classification.mp4 80.94 MB
5. Support Vector Machine (SVM)/2. Linear SVM Classification.srt 13.07 KB
5. Support Vector Machine (SVM)/3. Polynomial Kernel.mp4 34.96 MB
5. Support Vector Machine (SVM)/3. Polynomial Kernel.srt 5.98 KB
5. Support Vector Machine (SVM)/4. Radial Basis Function.mp4 70.13 MB
5. Support Vector Machine (SVM)/4. Radial Basis Function.srt 9.41 KB
5. Support Vector Machine (SVM)/5. Support Vector Regression.mp4 59.68 MB
5. Support Vector Machine (SVM)/5. Support Vector Regression.srt 9.80 KB
6. Tree/1. Introduction to Decision Tree.mp4 43.86 MB
6. Tree/1. Introduction to Decision Tree.srt 8.65 KB
6. Tree/2. Training and Visualizing a Decision Tree.mp4 51.40 MB
6. Tree/2. Training and Visualizing a Decision Tree.srt 7.46 KB
6. Tree/3. Visualizing Boundary.mp4 54.72 MB
6. Tree/3. Visualizing Boundary.srt 9.61 KB
6. Tree/4. Tree Regression, Regularization and Over Fitting.mp4 40.05 MB
6. Tree/4. Tree Regression, Regularization and Over Fitting.srt 5.59 KB
6. Tree/5. End to End Modeling.mp4 35.62 MB
6. Tree/5. End to End Modeling.srt 5.55 KB
6. Tree/6. Project HR.mp4 177.83 MB
6. Tree/6. Project HR.srt 30.75 KB
6. Tree/7. Project HR with Google Colab.mp4 66.57 MB
6. Tree/7. Project HR with Google Colab.srt 12.68 KB
7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.mp4 37.17 MB
7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.srt 5.85 KB
7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.mp4 37.85 MB
7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.srt 6.14 KB
7. Ensemble Machine Learning/2. Bagging.mp4 165.44 MB
7. Ensemble Machine Learning/2. Bagging.srt 22.80 KB
7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.mp4 80.28 MB
7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.srt 11.54 KB
7. Ensemble Machine Learning/4. AdaBoost.mp4 49.85 MB
7. Ensemble Machine Learning/4. AdaBoost.srt 8.22 KB
7. Ensemble Machine Learning/5. Gradient Boosting Machine.mp4 21.96 MB
7. Ensemble Machine Learning/5. Gradient Boosting Machine.srt 3.67 KB
7. Ensemble Machine Learning/6. XGBoost Installation.mp4 22.26 MB
7. Ensemble Machine Learning/6. XGBoost Installation.srt 3.02 KB
7. Ensemble Machine Learning/7. XGBoost.mp4 35.05 MB
7. Ensemble Machine Learning/7. XGBoost.srt 5.40 KB
7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.mp4 59.21 MB
7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.srt 10.44 KB
7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.mp4 46.40 MB
7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.srt 7.79 KB
8. k-Nearest Neighbours (kNN)/1. kNN Introduction.mp4 62.95 MB
8. k-Nearest Neighbours (kNN)/1. kNN Introduction.srt 12.00 KB
8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.mp4 75.73 MB
8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.srt 10.52 KB
8. k-Nearest Neighbours (kNN)/3. Addition Materials.html 335 B
8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.mp4 49.40 MB
8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.srt 24.53 KB
8. k-Nearest Neighbours (kNN)/4.1 0805.zip 40.76 KB
9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.mp4 31.37 MB
9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.srt 5.66 KB
9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.mp4 49.03 MB
9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.srt 8.82 KB
9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.mp4 47.87 MB
9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.srt 7.52 KB
9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.mp4 36.60 MB
9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.srt 6.56 KB
9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.mp4 21.44 MB
9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.srt 3.91 KB
9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.mp4 34.15 MB
9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.srt 6.43 KB
9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.mp4 30.74 MB
9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.srt 4.75 KB
[CourseClub.Me].url 48 B
[DesireCourse.Net].url 51 B
[FreeCourseWorld.Com].url 54 B
No trackers found

TorrentBank
Copyright © 2024